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For nonautonomous linear differential equations ẋ=A(t) x with locally inte-
grable A: R Q RN×N the so-called dichotomy spectrum is investigated in this
paper. As the closely related dichotomy spectrum for skew product flows with
compact base (Sacker–Sell spectrum) our dichotomy spectrum for nonautono-
mous differential equations consists of at most N closed intervals, which in
contrast to the Sacker–Sell spectrum may be unbounded. In the constant coef-
ficients case these intervals reduce to the real parts of the eigenvalues of A. In
any case the spectral intervals are associated with spectral manifolds comprising
solutions with a common exponential growth rate. The main result of this
paper is a spectral theorem which describes all possible forms of the dichotomy
spectrum.

KEY WORDS: Dichotomy spectrum; nonautonomous differential equations.

1. INTRODUCTION

Consider a linear system of differential equations

ẋ=A(t) x (1)

with A ¥ L1loc=L1loc(R, RN×N), the space of locally integrable matrix func-
tions A: R Q RN×N, N ¥ N. Let F: R×R Q RN×N, (t, y)WF(t, y) denote
its evolution operator, i.e., F( · , y) t solves the initial value problem (1),
x(y)=t, for y ¥ R, t ¥ RN.



We introduce a spectral notion for system (1) which is adequate to
show that the qualitative structure of system (1) carries over to weakly
nonlinear perturbations of (1). Let all Lyapunov exponents for tQ. of (1)
be negative. Then (1) is asymptotically stable (even exponentially stable).
But Hahn [8, Example 3, pp. 321–322] gives a nonlinearly perturbed system

ẋ=A(t) x+f(t, x), ||f(t, x)|| [ C ||x||1+a for ||x|| [ h, C, a > 0
(2)

with unstable zero solution. On the other hand a nonautonomous version
of the theorem of linearized asymptotic stability shows that the zero solu-
tion of (2) inherits the asymptotic stability of (1) if the evolution operator
satisfies the estimate

||F(t, s)|| [Ke−a(t−s) for t \ s (3)

with K \ 1 and a > 0 independent of t, s. If all Lyapunov exponents of (1)
are negative then (3) also holds but now K depends on s ¥ R. The estimate
(3) is a special case of an exponential dichotomy for (1). Exponential
dichotomies also play an important role in the theory of integral manifolds
for systems (2) (see, e.g., Aulbach and Wanner [1]). We agree with Coppel
[7] ‘‘that dichotomies, rather than Lyapunov’s characteristic exponents,
are the key to questions of asymptotic behaviour for nonautonomous dif-
ferential equations.’’

For linear skew product flows with compact base Sacker and Sell
[11–14] introduced and investigated a spectrum (called Sacker–Sell spec-
trum, dynamical spectrum or dichotomy spectrum) defined with exponential
dichotomies. Since these classical papers a lot of research has been done to
understand and extend this fruitful concept to various situations. For con-
nections with other spectra see, e.g., Johnson, Palmer and Sell [9], Chicone
and Latushkin [2] or Colonius and Kliemann [6]; generalizations to the
infinite dimensional case can be found e.g., in Sacker and Sell [15] and
Chow and Leiva [3–5], etc.

There is a well-known procedure to associate a linear skew product
flow to a linear system (1) of differential equations (see, e.g., [14]). There-
fore let s: R×L1loc Q L1loc denote the translation which maps every A ¥ L1loc
to its translate s(s, A)=A( ·+s). It is a continuous flow (G. R. Sell [16,
Thm. III.11, p. 43]). Define f(t, A) to be the solution of the matrix differ-
ential equation

Ẋ=A(t) X, X(0)=I ¥ RN×N
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for arbitrary A ¥ L1loc. Then (t, A, x)W f(t, A) x is a cocycle in RN over s,
i.e., it satisfies the cocycle property

f(0, A)=I for all A ¥ L1loc

f(t+s, A)=f(t, s(s, A)) p f(s, A) for all s, t ¥ R, A ¥ L1loc

The cocycle f(t, A) x is continuous in (t, A, x) ¥ R×L1loc×RN. Since this
important result has not been proved in the literature yet, we indicate its
easy proof here. Let An Q A0 in L1loc for nQ., i.e., >T−T ||An(s)−A0(s)|| ds
Q 0 for every T > 0. We show only f(t, An)Q f(t, A0) uniformly in t ¥ J=
[−T, T] for arbitrary T > 0, the rest is clear. To estimate un(t)=||f(t, An)
−f(t, A0)|| note that the difference in the norm satisfies the differential
equation X=An(t) X+(An(t)−A0(t)) f(t, A0). Hence with the variation of
constants formula

un(t) [ F
t

0
||f(t−s, An)|| · ||An(s)−A0(s)|| · ||f(s, A0)|| ds

and we are finished if sups ¥ J ||f(s, An)|| [M for all n ¥ N with someM> 0.
Therefore apply the Gronwall inequality to un(t) [ vn(t)+> t0 ||An(s)|| · un(s) ds
with vn(t)=> t0 ||An(s)−A0(s)|| · ||f(s, A0)|| ds to get the estimate

un(t) [ vn(t)+:F
t

0
vn(s) · ||An(s)|| · exp 1 :F

t

s
||An(y)|| dy : 2 ds :

Using the uniform boundedness of sups ¥ J vn(s) and >J ||An(y)|| dy in n ¥ N
we get the result. The continuous mapping

p: R×L1loc×RNQ L1loc×RN, p(t, A, x)=(s(t, A), f(t, A) x)

is a skew product flow. Its restriction p: R×H(A)×RNQH(A)×RN to the
so-called hull H(A)=cl{A( ·+s) : s ¥ R} of A ¥ L1loc, is said to be the skew
product flow which is associated to the linear system (1).

We stress the point that the existing results on dichotomy spectrum for
linear skew product flows can not be applied to general linear systems (1),
see also Remark 3.2. For this reason we give a direct treatment of the
subject in this paper resulting in a Spectral Theorem describing all possible
forms of the dichotomy spectrum for systems (1). A new phenomenon is
the occurance of spectral manifolds which have an empty or unbounded
associated spectrum. Applications of our Spectral Theorem can be found in
the papers [18] and [19] on block diagonalization and normal forms for
nonautonomous differential equations.
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2. PRELIMINARIES

An invariant projector of (1) is defined to be a function P: R Q RN×N

of projections P(t), t ¥ R, such that

P(t)F(t, s)=F(t, s) P(s) for t, s ¥ R (4)

Note that P is continuous due to the identity P —F( · , s) P(s)F(s, · ). We
shall say that (1) admits an exponential dichotomy (ED) if there is an
invariant projector P and constants K \ 1 and a > 0 such that

||F(t, s) P(s)|| [Ke−a(t−s) for t \ s

||F(t, s)[I−P(s)]|| [Kea(t−s) for t [ s

In the following the shifted system ẋ=[A(t)− cI] x for c ¥ R will play an
important role and one can easily see that Fc(t, s) :=e−c(t−s)F(t, s) is its
evolution operator. If ẋ=[A(t)− cI] x admits an ED then its invariant
projector P is also invariant for ẋ=A(t) x, i.e., (4) holds. The dichotomy
estimates are equivalent to

||F(t, s) P(s)|| [Ke (c−a)(t−s) for t \ s

||F(t, s)[I−P(s)]|| [Ke(c+a)(t−s) for t [ s

Remark 2.1. If ẋ=[A(t)− cI] x admits an ED with invariant
projector P — I then ẋ=[A(t)−zI] x also admits an ED with the same
projector for every z > c resp. for every z < c if P — 0.

We follow Aulbach [1] and introduce a handy notion describing
exponential growth of functions.

Definition 2.1. Let c ¥ R. A continuous function g: R Q RN is

(a) c+-quasibounded if supt \ 0 ||g(t)|| e−ct <.,

(b) c−-quasibounded if supt [ 0 ||g(t)|| e−ct <..

Obviously g is c+-quasibounded if and only if for an arbitrary y ¥ R there
exists a positive constant C such that ||g(t)|| [ Cect for all t ¥ [y,.). The
zero function is c+-and c−-quasibounded for every c ¥ R.

Definition 2.2. We shall say that a nonempty set W … R×RN is a
linear integral manifold of (1) if
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(a) it is invariant, i.e., (y, t) ¥WS (t, F(t, y) t) ¥W for all t ¥ R,

(b) for every y ¥ R the fiber W(y)={t ¥ RN : (y, t) ¥W} is a linear
subspace of RN.

The fibers of a linear integral manifold W have constant dimension. Let
dimW :=dimW(y) denote the fiber dimension. The extended state space
R×RN and the graph R×{0} of the zero solution are always linear integral
manifolds. A linear integral manifold is a topological manifold in R×RN

and a vector bundle over R. If W1 and W2 are linear integral manifolds of
(1), then the intersection and the sum

W1 5W2 :={(y, t) ¥ R×RN : t ¥W1(y) 5W2(y)}

W1+W2 :={(y, t) ¥ R×RN : t ¥W1(y)+W2(y)}

are also linear integral manifolds of (1). A sum W1+·· ·+Wn of linear
integral manifolds is said to be a Whitney-sum W1 À · · · ÀWn if Wi 5Wj=
R×{0} for i ] j. The image im P :={(y, t) ¥ R×RN : t ¥ im P(y)} and
kernel ker P :={(y, t) ¥ R×RN : t ¥ ker P(y)} of an invariant projector P
are linear integral manifolds of (1) with ker P À im P=R×RN.

Example 2.1. The system ẋ1=−x1, ẋ2=x2 has the integral mani-
folds

R×{0}×{0}, S={(y, t1, 0) ¥ R3}, U={(y, 0, t2) ¥ R3}, R×R2

The fibers are constant and the projections {0}×{0}, R×{0}, {0}×R, R2

on the state space R2 are usually called invariant manifolds.
The eigenvalues of this example are −1 and 1. They describe the

exponential growth of solutions and we get (note that 0 ¥ (−1, 1))

S :={(y, t1, t2) ¥ R×R2 : (e−(t− y)t1, e t− yt2) is 0+-quasibounded}

U :={(y, t1, t2) ¥ R×R2 : (e−(t− y)t1, e t− yt2) is 0−-quasibounded}

This motivates the definition of the following sets for system (1):

Sc :={(y, t) ¥ R×RN : F( · , y) t is c+-quasibounded}

Uc :={(y, t) ¥ R×RN : F( · , y) t is c−-quasibounded}

It is easy to see that Sc and Uc are linear integral manifolds of (1) and that
the following monotonicity holds

c [ zSSc …Sz and Uc ‡Uz
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Lemma 2.1. If ẋ=[A(t)− cI] x admits an ED with invariant projec-
tor P for a c ¥ R then

Sc=im P, Uc=ker P and Sc ÀUc=R×RN

Proof. We show onlySc=im P, since the rest is analogous.

(…) Let y ¥ R and t ¥Sc(y), i.e., ||F(t, y) t|| [ Cect for t \ y with
some positive constant C. Therefore ||Fc(t, y) t|| [ Cecy for t \ y. Now
write t=t1+t2 with t1 ¥ im P(y), t2 ¥ ker P(y). We show t2=0. The
invariance of P implies for t ¥ R the identity

t2=Fc(y, t) Fc(t, y)[I−P(y)] t=Fc(y, t)[I−P(t)]Fc(t, y) t

and with the ED of ẋ=[A(t)− cI] x one has the estimate

||t2 || [Kea(y−t) ||Fc(t, y) t|| for t \ y

Due to a > 0 and the boundeness of ||Fc( · , y) t|| the right hand side con-
verges to 0 for tQ.. It follows t2=0.

(‡) Let y ¥ R and t ¥ im P(y), i.e., P(y) t=t. The ED implies

||Fc(t, y) t|| [Ke−a(t−y) ||t|| [K ||t|| for t \ y

and therefore F( · , y) t is c+-quasibounded and we get t ¥Sc(y). i

3. DICHOTOMY SPECTRUM

We continue our investigation of system (1).

Definition 3.1. The dichotomy spectrum of (1) is the set

S(A)={c ¥ R : ẋ=[A(t)− cI] x admits no ED}

and the resolvent set r(A)=R0S(A) is its complement.

Lemma 3.1. The resolvent set is open, i.e., for every c ¥ r(A) exists a
e=e(c) > 0 such that (c− e, c+e) … r(A) and moreover

Sz=Sc and Uz=Uc for z ¥ (c− e, c+e)
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Proof. Let c ¥ r(A). Then ẋ[A(t)− cI] x admits an ED, i.e.,

||Fc(t, s) P(s)|| [Ke−a(t−s) for t \ s

||Fc(t, s)[I−P(s)]|| [Kea(t−s) for t [ s

with an invariant projector P and constants K \ 1 and a > 0. For e :=a/2
and z ¥ (c− e, c+e) we have Fz(t, s)=e(c−z)(t−s)Fc(t, s). Now P is also an
invariant projector for ẋ=[A(t)−zI] x and the estimates

||Fz(t, s) P(s)|| [Ke(c−z−a)(t−s) [Ke−e(t−s) for t \ s

||Fz(t, s)[I−P(s)]|| [Ke(c−z+a)(t−s) [Kee(t−s) for t [ s

hold. Hence z ¥ r(A). Moreover, since the exponential dichotomies involve
the same projector, Lemma 2.1 yieldsSz=Sc and Uz=Uc. i

Lemma 3.2. Let c1, c2 ¥ r(A) with c1 < c2. Then F=Uc1 5Sc2 is a
linear integral manifold which satisfies exactly ore of the following two
alternatives and the statements given in each alternative are equivalent:

Alternative I Alternative II

(A) F=R×{0} (AŒ) F ] R×{0}
(B) [c1, c2] … r(A) (BŒ) There is a z ¥ (c1, c2) 5 S(A)
(C) Sc1=Sc2 and Uc1=Uc2 (C Œ) dimSc1 < dimSc2
(D) Sc=Sc2 and Uc=Uc2 (DŒ) dimUc1 > dim Uc2

for c ¥ [c1, c2]

Proof. (B)S (D). Arguing negatively, let us assume that there exists
a c ¥ [c1, c2] such thatSc ]Sc2, or Uc ]Uc2, w.l.o.g.Sc ]Sc2. Define

z0 :=inf{z ¥ [c, c2] : Sz=Sc2}

The inequality Sc ]Sc2 implies z0 ¥ [c, c2] and therefore z0 ¥ r(A). There
are two cases to consider: (i) Sz0=Sc2 or (ii) Sz0 ]Sc2. In case (i) Lem-
ma 3.1 implies Sz=Sz0 for z ¥ (z0− e, z0+e) with some e > 0, which con-
tradicts the definition of z0. In case (ii) Lemma 3.1 implies Sz ]Sz0 for
z ¥ (z0− e, z0+e), which also contradicts the definition of z0.

(D)S (C). This is obvious.

(C)S (B). Both systems ẋ=[A(t)− ciI] x, i=1, 2, admit ED with
constants Ki \ 1 and ai > 0. Since Sc1=Sc2 and Uc1=Uc2, Lemma 2.1
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implies that both ED involve the same invariant projector P. With K :=
max {K1, K2} and a :=min {a1, a2} we get

||Fci(t, s) P(s)|| [Ke−a(t−s) for t \ s

||Fci(t, s)[I−P(s)]|| [Kea(t−s) for t [ s

for i=1, 2. The first inequality for i=1 and the second for i=2 imply

||Fc(t, s) P(s)|| [Ke−a(t−s) for t \ s

||Fc(t, s)[I−P(s)]|| [Kea(t−s) for t [ s

for every c ¥ [c1, c2] and therefore [c1, c2] … r(A).

(C)S (A). Lemma 2.1 implies F=Uc1 5Sc2=Uc1 5Sc1=R×{0}.
Thus we have (B)Z (C)Z (D)S (A).

(CŒ)Z (DŒ). Lemma 2.1 implies dimSci+dimUci=N, i=1, 2, hence
dimSc1 < dimSc2 ZN−dim Uc1 <N−dimUc2 Z dimUc1 > dimUc2.

(BŒ)S (CŒ), (DŒ). Since (BŒ) is the opposite of (B), the proved impli-
cation (C)S (B) yields Sc1 ]Sc2 or Uc1 ]Uc2. Monotonicity implies Sc1 e
Sc2 or Uc1 fUc2, w.l.o.g. Sc1 eSc2. Then there is a y ¥ R such that Sc1(y)
eSc2(y). For subspaces, however, this is possible only if dimSc1(y) <
dimSc2(y).

(CŒ), (DŒ)S (AŒ). Using dimSc1 < dimSc2 and dimSc1+dim Uc1=N
we get

dimF=dim[Uc1 5Sc2] \ dim Uc1+dimSc2−N

> dimUc1+dimSc1−N=0

and thereforeF is not the trivial integral manifold which has dimension 0.

(AŒ)S (BŒ). Since (AŒ) is the opposite of (A), the proved implication
(B)S (A) implies the opposite of (B) which is (BŒ).

Thus we have (AŒ)Z (BŒ)Z (CŒ)Z (DŒ).

(A)S (B), (C), (D). The implication (A)S (B) is equivalent to the
proved implication (BŒ)S (AŒ). i

The following algebraic lemma is quite obvious: Let A, B and C be
subspaces of a vector space X. If A ` C then

A 5 [B+C]=[A 5 B]+C
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Spectral Theorem. The dichotomy spectrum S(A) of (1) is the disjoint
union of n closed intervals (called spectral intervals) where 0 [ n [N, i.e.,
S(A)=” or S(A)=R or one of the four cases

S(A)=˛ [a1, b1]or

(−., b1]

ˇ 2 [a2, b2] 2 · · · 2 [an−1, bn−1] 2 ˛
[an, bn]

or

[an,.)

ˇ

where a1 [ b1 < a2 [ b2 < · · · < an [ bn. Choose a

c0 ¥ r(A) with (−., c0) … r(A) if possible (5)

otherwise define Uc0 :=R×RN, Sc0 :=R×{0}. Choose a

cn ¥ r(A) with (cn,.) … r(A) if possible (6)

otherwise define Ucn :=R×{0}, Scn :=R×RN. Then the sets

W0=Sc0 and Wn+1=Ucn

are linear integral manifolds of (1). For n \ 2 choose ci ¥ r(A) with

bi < ci < ai+1 for i=1,..., n−1 (7)

Then for every i=1,..., n the intersection

Wi=Uci−1 5Sci

is a linear integral manifold of (1) with dimWi \ 1. The linear integral
manifolds Wi, i=0,..., n+1, are called spectral manifolds and they are inde-
pendent of the choice of ci in (5), (6) and (7). Moreover

W0 À · · · ÀWn+1=R×RN (Whitney sum)

i.e., Wi 5Wj=R×{0} for i ] j and W0+·· ·+Wn+1=R×RN.

Proof. First, recall that the resolvent set r(A) is open (Lemma 3.1)
and therefore the dichotomy spectrum S(A) is the disjoint union of closed
intervals. Next we will show that S(A) consists of at most N intervals.
Indeed, if S(A) contains N+1 components, then one can choose a collec-
tion of points z1,..., zN in r(A) such that z1 < · · · < zN and each of the
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intervals (−., z1), (z1, z2),..., (zN−1, zN), (zN,.) has nonempty intersec-
tion with the spectrum S(A). Now alternative II of Lemma 3.2 implies

0 [ dimSz1 < · · · < dimSzN [N

and therefore either dimSz1=0 or dimSzN=N or both, w.l.o.g. dimSzN
=N, i.e., SzN=R×RN. Because of Lemma 2.1 the projector P of the ED
of ẋ=[A(t)−zNI] x equals I and Remark 2.1 yields the contradiction
(zN,.) … r(A). This proves the alternatives for S(A).

Obviously the sets W0,..., Wn+1 are linear integral manifolds. To prove
now that dimW1 \ 1,..., dimWn \ 1 for n \ 1, let us assume that dimW1
=0, i.e., Uc0 5Sc1=R×{0}. If (−., b1] is a spectral interval this implies
that Sc1=R×{0}. Then the projector of the ED of ẋ=[A(t) x− c1I] x
equals 0 and Remark 2.1 yields the contradiction (−., c1) … r(A). If
[a1, b1] is a spectral interval then [c0, c1] 5 S(A) ]” and alternative II of
Lemma3.2 yields a contradiction. Therefore dimW1 \ 1 and similarly dimWn
\ 1. Furthermore for n \ 3 and i=2,..., n−1 one has (ci−1, ci) 5 S(A) ]”
and again alternative II of Lemma 3.2 yields dimWi \ 1.

For i < j we have Wi …Sci and Wj …Ucj−1 …Uci and with Lemma 2.1
this givesWi 5Wj …Sci 5Uci=R×{0}, soWi 5Wj=R×{0} for i ] j.

To show that W0+·· ·+Wn+1=R×RN, choose and fix a y ¥ R and
recall the monotonicity relations Sc0(y) … · · · …Scn(y), Uc0(y) ‡ · · · ‡Ucn(y)
and the identitiesSci(y)+Uci(y)=RN for i=0,..., n. ThereforeRN=W0(y)+
Uc0(y). Now using the algebraic lemma for n \ 1, one has

RN=W0(y)+Uc0(y) 5 [Sc1(y)+Uc1(y)]

=W0(y)+[Uc0(y) 5Sc1(y)]+Uc1(y)

=W0(y)+W1(y)+Uc1(y)

Doing the same for Uc1(y), we get

RN=W0(y)+W1(y)+Uc1(y) 5 [Sc2(y)+Uc2(y)]

=W0(y)+W1(y)+[Uc1(y) 5Sc2(y)]+Uc2(y)

=W0(y)+W1(y)+W2(y)+Uc2(y)

and mathematical induction yields RN=W0(y)+· · ·+Wn+1(y).
To finish the proof, let also ĉ0,..., ĉn ¥ r(A) be given with properties

(5), (6) and (7). Then alternative I of Lemma 3.2 implies

Sci=Sĉi and Uci=Uĉi for i=0,..., n
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and therefore the linear integral manifolds W0,..., Wn+1 are independent of
the choice of c0,..., cn in (5), (6) and (7). i

Remark 3.1 (Robustness). A well-known perturbation result (see,
e.g., Coppel [7, Proposition 4.1, p. 34]) implies that for each sufficiently
small e > 0 and each c in the resolvent set r(A) there exists a d=d(e, c) > 0
such that for each locally integrable matrix function B: R Q RN×N with
supt ¥ R ||B(t)|| < d the resolvent set r(A+B) of the perturbed system
ẋ=[A(t)+B(t)] x also contains the value c. For systems (1) with compact
hull (see Remark 3.2) Pliss and Sell [10] prove that the dichotomy con-
stants and the invariant projector depend continuously on the perturba-
tion. Nevertheless in general perturbations can ‘‘melt together’’ two nearby
spectral intervals as well as ‘‘break up’’ a spectral interval into two new
intervals.

3.1. Bounded Growth

We follow Coppel [7] and will say that (1) has bounded growth if there
exist constants K \ 1 and a \ 0 such that

||F(t, s)|| [Kea |t−s| for t, s ¥ R (8)

Note that (1) has bounded growth if and only if each solution of (1)
depends uniformly continuous on initial conditions, i.e., for each h > 0 and
e > 0 there is a corresponding d=d(h, e) > 0 such that for t, g ¥ RN

||t−g|| < dS ||F(t, y) t−F(t, y) g|| < e for all t, y ¥ R with |t−y| < h

Theorem 3.1. The following statements are equivalent:

(A) The linear system (1) has bounded growth.

(B) The linear system (1) has a nonempty and compact dichotomy
spectrum S(A)=[a1, b1] 2 · · · 2 [an, bn] where 1 [ n [N and
the spectral manifolds W0 and Wn+1 are trivial, i.e., W1 À · · · À
Wn=R×RN.

Proof. (A)S (B). Assume that (8) holds. Let c > a. With the defini-
tion a :=c−a > 0 the estimate (8) implies

||Fc(t, s)|| [Ke−a(t−s) for t \ s
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and therefore ẋ=[A(t)− cI] x admits an ED with invariant projector P=I.
We have c ¥ r(A) and similary for c < −a, therefore S(A) … [−a, a], i.e.,
the dichotomy spectrum is bounded. Additionally Lemma 2.1 implies

Sc=R×RN and Uc=R×{0} for c > a

Sc=R×{0} and Uc=R×RN for c < −a

i.e.,W0=Wn+1=R×{0}. To show that S(A) is nonempty, define

c0 :=inf{c ¥ r(A) : Sc=R×RN}

it follows c0 ¥ [−a, a]. Arguing negatively, let us assume now that c0 ¥ r(A).
There are two cases to consider: (i) Sc0=R×RN or (ii) Sc0 ] R×RN. In
case (i) Lemma 3.1 implies Sc=R×RN for c ¥ (c0− e, c0+e) with some
e > 0, which contradicts the definition of c0. In case (ii) Lemma 3.1 implies
Sc ] R×RN for c ¥ (c0− e, c0+e), which also contradicts the definition of
c0. Hence c0 ¥ S(A) ]”.

(B)S (A). Choose a collection of points c0, c1,..., cn ¥ r(A) such that

c0 < a1 [ b1 < c1 < · · · < cn−1 < an [ bn < cn

Monotonicity implies the inclusionWi=Uci−1 5Sci …Uc0 5Scn for i=1,..., n
and thereforeW1+·· ·+Wn …Uc0 5Scn. Since by assumptionW1+·· ·+Wn
=R×RN, one has

Uc0(y)=RN and Scn(y)=RN for all y ¥ R

It then follows from Lemma 2.1 that ẋ=[A(t)− c0I] x admits an ED with
constants K1 \ 1, a1 > 0 and invariant projector P — 0, i.e., the dichotomy
estimate

||F(t, s)|| [K1e (c0+a1)(t−s) for t [ s

holds. Also ẋ=[A(t)− cnI] x admits an ED with constants K2 \ 1, a2 > 0
and invariant projector P — I and one has

||F(t, s)|| [K2e (cn−a2)(t−s) for t \ s

Combining these two estimates with K :=max {K1, K2} and a :=max{0,
−c0−a1, cn−a2} we get ||F(t, s)|| [Kea |t−s| for t, s ¥ R. i

Remark 3.2 (Dichotomy spectrum and Sacker–Sell spectrum). In a
now famous paper [14] Sacker and Sell introduced a spectral theory for
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linear skew product flows with compact base. To apply the Sacker–Sell
theory to the linear skew product flow

p: R×H(A)×RNQH(A)×RN, p(t, A, x)=(s(t, A), f(t, A) x)

which is associated to the linear system (1), the hull H(A) has to be
compact and this is the case if and only if (G. R. Sell [16, Thm. III.12,
p. 44])

(i) there is a b in R such that >10 |A(s+t)| ds [ b for all t ¥ R,

(ii) for every e > 0 there is a d > 0 such that

F
1

0
|A(s+t+h)−A(s+t)| ds [ e

whenever |h| [ d and t ¥ R.
If L1loc is replaced by the space of almost periodic A or bounded and

uniformly continuous A or essentially bounded A then the hull is compact
with the uniform topology or the compact-open topology (see [14]) or the
weak*-topology (see [6]), respectively. At this point our Spectral Theorem
shows that the search for the adequate topology of H(A) is not necessary.
On the other hand, if p is a linear skew product flow with compact base
H(A), then the Sacker–Sell spectrum and the dichotomy spectrum coincide
and the Sacker–Sell theory implies the statement (B) of Lemma 3.1. There-
fore the equivalent statement (A) is also valid, i.e., (1) has bounded growth.
In other words: The Sacker–Sell theory is applicable to equations (1) with
bounded growth, if one knows an adequate topology for H(A). However,
there are systems (1) with bounded growth for which such a topology does
not exist, for example ẋ=2t cos(t2) x has bounded growth. Assume that p
is the associated linear skew product flow with compact base H(A). Then
for s(s, A)=2( ·+s) cos( ·+s)2 ¥H(A) one has f(t, s(s, A)) x=exp(sin
(s+t)2− sin s2) x and by continuity of p and compactness of H(A) there
exists an e > 0 such that

|f(t, s(s, A))| < 2 for |t| < e and all s ¥ R

Choosing k ¥ N with t :=`p/2+2kp−`−p/2+2kp < e and s :=
`−p/2+2kp this yields the contradiction

exp(2)=exp(sin(s+t)2− sin s2) < 2

We used the ideas of the Sacker–Sell theory to prove directly our
Spectral Theorem for linear systems (1). Although the base H(A) … L1loc of
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the associated linear skew product flow is in general not compact one can
show along the lines of [11, proof of Thm. 5, p. 453] that S(A)=S(B) for
every B ¥H(A). This indicates a possible generalization of the Sacker–Sell
theory to linear skew product flows where the base space is note compact,
thereby yielding an analogous Spectral Theorem for the associated skew
product flow p.

3.2. Scalar Differential Equations

For a scalar linear differential equation ẋ=A(t) x with A: R Q R
locally integrable, the evolution operator can be given explicitely,

F(t, s)=exp 1F t
s
A(y) dy2 for t, s ¥ R

Now we give examples to show that each alternative of the Spectral
Theorem really occurs (we could also give C. examples).

(a) S(A)=” for A(t)=|t|. Choose and fix an arbitrary c ¥ R and
a > 0. With the compact set Mc+a :={y ¥ R : A(y) [ c+a} one has the
following estimate for t [ s:

F
t

s
[A(y)−(c+a)] dy

=F
[t, s] 5Mc+a

[c+a−A(y)] dy+F
[t, s] 5Mcc+a

[c+a−A(y)] dy

[ F
Mc+a

[c+a−A(y)] dy=: c

Since e−(c+a)(t−s)F(t, s)=exp(> ts [A(y)−(c+a)] dy), it follows that

|F(t, s)| [Ke(c+a)(t−s) for t [ s

where K=ec and this shows that ẋ=[A(t)− c] x admits an ED with
projector P — 0, i.e., c ¥ r(A).

(b) S(A)=R for A(t)=t. Arguing negatively, let us assume that
there exists a c ¥ R such that ẋ=[A(t)− c] x admits an ED. Recall that the
invariant projector P is continuous and P(t) ¥ R is a projection, so either
P — 0 or P — 1. If P — 0 the dichotomy estimate

e
1
2 t
2− 12 s

2
[Ke(c+a)(t−s) for t [ s
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yields a contradiction for s=0 and tQ −. and analogously for P — 1.
With similar arguments the following dichotomy spectra are calculated.

(c) S(A)=(−., b] for A(t)=3b+t for t [ 0
b for t \ 0

, where b ¥ R

(d) S(A)=[a,.) for A(t)=3a for t [ 0
a+t for t \ 0

, where a ¥ R

(e) S(A)=[a, b] for A(t)=3a for t [ 0
b for t > 0

, where a, b ¥ R, a [ b

One can easily see that a scalar differential equation ẋ=A(t) x has
bounded growth if and only if

F
t

s
A(y) dy [ c+d |t−s| for t, s ¥ R

with constants c, d \ 0. An interesting unsolved problem in this context is
to determine a characterization of bounded growth (in terms of the linear
part A) in higher dimensions (N \ 2). Note that the scalar equation ẋ=
2t cos(t2) x has bounded growth and one-point spectrum S(A)={0}
although the linear part A(t)=2t cos t2 is unbounded. The class of scalar
differential equations with bounded growth is stable under addition, i.e., if
ẋ=Ai(t) x, i=1, 2, are scalar differential equations with bounded growth
then the equation ẋ=[A1(t)+A2(t)] x has bounded growth as well. This is
due to the fact, that for a scalar equation the evolution operator of the sum
is the product of the evolution operators of the first and second system. It
is an unanswered question if the class of higher dimensional systems (1)
with bounded growth is stable under addition.
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